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Commercial aluminum rolling mills operate under very restricted thermomechanical conditions deter-
mined from experience and plant trials. In this paper we report results for four-stand tandem mill rolling
simulations within and beyond the thermomechanical conditions typical of a rolling mill by plane strain
compression (PSC) testing to assess the effect of deformed conditions on the texture of the hot deformed
aluminum strip after annealing. A neural network modeling study was then initiated to find a predictive
relationship between the observed texture and the thermomechanical parameters of strain, strain rate, and
temperature. The model suggested that temperature is the prime variable that influences texture. Such
models can be used to evaluate optimal strategies for the control of process parameters of a four-stand
tandem mill.
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1. Introduction

The majority of semifabricated, flat rolled aluminum prod-
ucts are manufactured using large and expensive hot and cold
rolling facilities to meet the high standards required for subse-
quent downstream processing and in-service performance. For
many products the hot rolling stage is crucial in determining
the correct microstructure, including crystallographic texture,
prior to cold rolling and in some cases, after final annealing.
On-line monitoring for the control of metallurgical parameters
is in its infancy within the industry, and strict practices for
process control are enforced to achieve the correct metallurgy.
These practices are traditionally established on the basis of
experience and plant trials. To establish new processes it is
always helpful to have physical simulations of the process as an
alternative to costly plant trials. As a result, in recent years the
determination of process-microstructure relationships relating
to hot tandem mill rolling of aluminum alloys has relied on
extensive use of laboratory plane strain compression (PSC)
testing.[1]

The microstructural changes, especially with respect to
crystallographic texture, that occur during hot tandem mill roll-
ing of aluminum and aluminum alloys are very sensitive to
strain, strain rate, and temperature. These changes include both
dynamic (during rolling) and static (between rolling passes and
after rolling) structural changes and involve recovery, recrys-
tallization, and grain growth. Although many experimental
studies have been conducted to examine the microstructural
evolution during hot deformation and subsequent recrystalliza-
tion for aluminum alloys, the quantitative link between micro-
structural changes and thermomechanical history has been
studied in a very limited manner and only for specific alloys.[2-5]

Control of texture during the manufacture of aluminum
strips is particularly important for the sheet used to make bev-
erage can bodies. The alloy used for this process is AA3104,
the composition of which, based on Al-Mn-Mg with impurity
levels of Fe and Si and deliberate additions of Cu, is tailored to
provide the correct balance of strength, formability, and ability
to be recycled. Texture control is necessary for this material
during rolling to minimize the formation of “ears” in the drawn
cups during forming of the can body from the final gauge
sheet.[1]

The tandem mill operating conditions impose a particular
thermomechanical history of strain, strain rate, and temperature
on the strip as it passes through the mill. Commercial rolling
mills are operated within a controlled range of process condi-
tions determined from experience and from plant trials. In this
work, a set of four-stand tandem mill rolling simulations have
been performed both within and beyond the extremes of ther-
momechanical history that might be experienced during com-
mercial processing to assess the effect on the texture of the hot
deformed strip after annealing. A modeling study was then
initiated to find a predictive relationship between the observed
texture and the thermomechanical parameters of strain, strain
rate, and temperature.

For many years there have been attempts to predict micro-
structural evolution in thermomechanically processed metals
based on basic physical metallurgical principles.[6-9] However,
while progress has been significant, to date these models can-
not predict accurately the microstructural evolution in situa-
tions as complex as those experienced during rolling in a tan-
dem mill. Furthermore, they often require knowledge of
internal state variables that are difficult to measure, such as
dislocation density during the thermomechanical process at all
stages. To obtain accurate predictions in these complex situa-
tions, it is often necessary to take an empirical approach in
which the input-output relationship is determined from the data
without reference to any simplified physical model.

One such approach is neural network modeling. Neural net-
works offer a flexible approach to data modeling as they can
provide an arbitrarily complex, nonlinear mapping between
one or more inputs and the output. This mapping is parameter-
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ized by a set of “weights,” the optimum values of which are
determined by training the network. Neural networks have
been used with some success, particularly in materials science
applications such as the prediction of weld toughness in
steel[10] and of damage in forged composites.[11]

In this study a static Gaussian process (GP) model is applied
to the problem of predicting crystallographic texture for PSC
deformed and recrystallized AA3104 aluminum alloy.

2. Experimental Procedure

2.1 Plane Strain Compression Testing

The experimental program was undertaken using a com-
puter-controlled plane strain compression (PSC) testing facility
at Alcan International Limited’s Banbury Research Laboratory,
UK. This machine is built on a C-frame design with horizon-
tally acting platens pressurized by a gas spring and with the
main moving parts servohydraulically controlled. The key op-
erating features are the two main cams, which travel at high
velocity driven by the main hydraulic cylinder, which is pow-
ered by the stored energy from six accumulators. The cams are
profiled to allow a constant strain rate on samples from 20 mm
starting thickness down to 250 �m. The motion profile is com-
municated to the moving platen via tie bars that pull cam rollers
onto the surface of the cams.[12] The machine is capable of
compressing specimens under similar strain, strain rate, and
temperature regimes as those typically found in industrial roll-
ing operations. In particular, it is able to simulate hot tandem
mill rolling, as it can perform multiple deformations in se-
quence on a single specimen based on a programmed profile.

2.2 Rolling Simulation Tests

A typical modern hot rolling mill comprises two stages:
ingot breakdown rolling to produce a slab in several passes
(typically 13 to 19) through a hot reversing mill, followed by
rolling of the slab through the three or four stands of a hot
tandem mill and coiling of the resulting strip. The tandem mill
deformation simulations performed in this work were carried
out using specimens machined from a sample of commercially
hot rolled AA3104 alloy slab taken immediately prior to trans-
fer to the hot tandem mill. The PSC specimens were 60 mm
wide by 75 mm high and 10 mm thick with the shortest side
parallel to the rolling direction. Thermocouple holes were
drilled into each specimen to measure the temperature during
the four stages of deformation. Each specimen was given a
sequence of four deformations with the strains, strain rates, and
temperatures selected to simulate a possible thermomechanical
trajectory through a tandem mill. The trajectory for each PSC
test was calculated using an in-house Alcan model for the hot
tandem mill rolling process. Within this testing philosophy, the
overall test matrix was defined to cover a wider range of de-
formation conditions than normally found in the commercial
operation of a hot tandem mill. The ranges of strain, strain rate,
and temperature covered by the test matrix for each of the four
stages of deformation are given in Table 1. After the last de-
formation step the samples were quenched in a water bath. The
specimens were then recrystallized by annealing at 350 °C for
two hours, and the texture components were measured by con-
ventional x-ray methods. A total of 52 samples were measured.

3. Modeling Methods

Industrial processing of materials such as aluminum is com-
plex. Although scientific investigations have helped greatly in
understanding the underlying physical phenomena, there re-
main many problems where quantitative treatments are lacking.
The slow rate of progress in predicting mechanical properties
in commercial metal processes is due to the dependence of a
large number of variables. Nevertheless, there are clear patterns
that experienced metallurgists recognize and understand.

Neural network models are extremely useful in such cir-
cumstances, not only in the study of mechanical properties but
wherever the complexity of the problem is overwhelming from
a fundamental perspective and where simplification is unac-
ceptable, as in the case of predicting the texture of rolled alu-
minum alloys.

Here we have used a specific model, namely the Gaussian
process model, for predicting the annealed textures of PSC
samples tested at different strain, strain rate, and temperature
values. A brief description of the model is given in the para-
graphs that follow. While being totally empirically based, such
a model fulfills two important roles: first, it enables one to
delineate better process control strategies for obtaining desir-
able microstructures, and second, it facilitates identifications of
the key determinacies for guiding the subsequent development
of physically based models.

3.1 The Gaussian Process Model

In modeling complex problems empirically, one does not
know what the parameterized form of the input-output rela-
tionship should be a priori. The Gaussian process model is a
way of avoiding having to explicitly parameterize this relation-
ship by parameterizing a probability model over the data in-
stead.[13,14]

The training data set, D, consists of a set of N inputs, XN

(�{x1, x2, . . . ,xN}), and the corresponding N outputs, tN. We
are interested in interpolating these data using a model able to
predict t at values of x that are not present in the training data.
Generally, the measured values of t will contain noise, �, so the
model’s prediction, y(x), is related to the target output by t �
y(x) + �.

A common approach to this noisy interpolation problem is
to parameterize the function y (x, w), where w is a set of
parameters that are determined from the training data, using
methods such as least-squares minimization of some cost func-
tion, E. This is the approach taken by feedforward multilayer
perceptron neural networks, which provide a suitable frame-
work for evaluating a nonlinear interpolating function (inter-
polant) of a set of training data. The parameters in these net-

Table 1 Ranges of the Thermomechanical Parameters
Used in the Experiment at Four Stages Representative of
the Four Rolls

Deformation Stage I Stage II Stage III Stage IV

Strain 0.62-1.2 0.62-1.2 0.62-1.2 0.34-1.2
Strain rate 3.2-10.0/s 9.5-23.9/s 22.5-55.0/s 67.4-163.9/s
Temperature 397-550 °C 337-507 °C 276-462 °C 202-399 °C
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works are presented by a set of weights: Training the neural
network is the process of calculating the optimum weights by
minimizing the cost function, E(w).

Bayesian probabilistic data modeling is a robust approach to
prediction problems and can be readily incorporated into the
neural network approach. Rather than giving a single “opti-
mum” prediction, Bayesian methods provide a probability dis-
tribution over the predicted value. This feature is often very
important as it can be used to produce a characteristic error in
the predictions, which represents the uncertainty arising from
interpolating noisy data. The probability of the data given the
weights, the likelihood, can be written P(D|w,�) � exp−��. � is
a so-called hyperparameter, which parameterizes the probabil-
ity distribution and is related to the noise variance, �, in the
target outputs. The maximum likelihood approach to training a
neural network (minimizing E) is therefore equivalent to maxi-
mizing P(D|w,�). However, we normally include an explicit
prior on the weights to specify our belief concerning the dis-
tribution of the weights in the absence of any data. This can be
written P(w |�), where � is another hyperparameter. This prior
is often used to give preference to smoother interpolating func-
tions rather than rapidly varying ones, which overfit the train-
ing data. This prior is particularly important when one tries to
model sparse data sets, as it generally improves the reliability
of predictions. We then apply Bayes’ theorem to the prior and
the likelihood to give the posterior probability distribution of
the weights given the data

P�w�D,�,�� = P�w�D,�� P�w����P�D� (Eq 1)

It is this quantity that we should maximize when training the
neural network. (We can ignore the denominator, P(D), when
making predictions with a single model and data set, D.)

The Bayesian approach to predictions prescribes that one
marginalizes (i.e., sums) over uncertain parameters. Ideally,
therefore, one should integrate over all values of the weights
rather than optimize them. We are interested in predicting a
new value, tN+1, given its corresponding input, xN+1, and the set
of training data, D. In terms of probability distributions we are
interested in finding P(tN+1|xN+1,D,�,�). This is obtained by
integrating over all possible values of the weights:

P�tN+1�xN+1,D,�,�� = � P�tN+1�xN+1,D,w,�,�� P�w�D,�,�� dw

(Eq 2)

The maximum of P(tN+1|xN+1,D,�,�) yields the most prob-
able prediction for tN+1. The integration can be performed by
Monte Carlo methods or by making simplifying assumptions
about the form of P(w|D,�,�) in the equation.

Note that we are really interested in P(tN+1|xN+1,D) rather
than P(tN+1|xN+1,D,�,�). This is obtained from Eq 2 by also
integrating over the hyperparameters � and � (although it is
often adequate to optimize � and �). These hyperparameters
are important because they control the complexity of the
model. They are distinct from parameters (i.e., network
weights), which parameterize the input-output mapping. One of
the advantages of the Bayesian approach to data modeling is
that it automatically embodies complexity control by means of
these hyperparameters.

From the Bayesian perspective, we are interested only in
P(tN+1|xN+1,D); we are not interested in the network weights
themselves. Given that we should integrate over all weights, a
preferable model is one that does not have such weights at all.
The Gaussian process can be considered a neural network that
we have integrated over all possible values of weights.

The Gaussian process approach to the prediction problem
assumes that the joint probability distribution of any N output
values, tN, is an N-dimensional Gaussian distribution:

P�tN�XN, �� = 1�Z Exp�−1�2 �tN − ��TCN
−1�tN − ��� (Eq 3)

This distribution is completely determined by the mean, �,
and the covariance matrix, CN. The elements of CN are given
by the covariance function Ci,j � C(xi,xj, �), where xi and xj

are any two inputs and � is a set of hyperparameters.
These hyperparameters explicitly parameterize a probability

distribution over the input-output function rather the function
itself. This is a probability distribution in an N-dimensional
space. Training of the model is done by maximizing the prob-
ability of the hyperparameters. Once trained, the model pre-
dicts the most probable value of the output for a new set of
inputs, together with a measure of the uncertainty of the pre-
diction. The degree of correlation achieved by a given prox-
imity of the input vectors is dictated by the hyperparameters.
There is one of these hyperparameters for each input dimen-
sion. The relative size of the hyperparameters is a measure of
relevance of each input dimension in determining the output.
The model assesses the relevance of each input parameter for
the prediction of the outputs from the associated values of the
hyperparameters. This model prohibits the process of overfit-
ting the training data, as models based on conventional neural
network are prone to do, and finds the most generalized path to
reach the output.[14] In the present case there are four loading
steps, each corresponding to a stand on the tandem mill. If the
process parameters are confined to strain, strain rate, and tem-
perature, this gives 12 process variable for each sample.

4. Results and Discussion

The cube, S, Goss, Copper, and random texture components
were measured for all of the 52 PSC specimens. In this exercise
we have focused our analysis on predicting the cube and S
texture components because S is the rolling texture and the
cube is the main texture component that affects the earing.

The GP model was run using 52 data sets from 52 PSC test
results with various combinations of variables and by changing
the strain to true strain. Normally to assess the predictive ca-
pability of such a model, half the data are used for training and
the other half for testing. However, our data set was too small
to train the model on just half of the data and so we used a
one-by-one analysis technique, which still has the virtue that
the model has no prior knowledge of the outcome of the test
trajectory. In this procedure, 51 data sets were used for training
and the outcome of the 52nd input trajectory was predicted.
This procedure was then repeated for each of the other 51 data
sets. The results (predicted using 52 similar models) were plot-
ted as the true values on the X-axis and the predicted data on
the Y-axis. To compare the performance of the analyses for
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various combinations of the variables, we formulated various
metrics for quantifying the goodness of the predictions. Figure
1 shows a typical true against predicted plot. On this figure the
difference between the true value and the predicted value is
denoted as 	Z. This is also the distance of the ordinate of the
predicted value from the straight line (AB) having a gradient
equal to 1. In certain circumstances the predicted versus true
plot exhibits a strong level of correlation, but the gradient is
less than 1. Although such a relationship is not ideal, it could
still be used to control the output given the inputs. The straight
line CD is the least-squared fitted line of the predicted results
having a gradient m. 	y is the distance of the ordinate of the
predicted points from this line. The GP model also estimates
the uncertainty (standard deviation 
) of the prediction of each
datum. Consequently, the following metrics have been used are
estimated based on the following mathematical formulae:

R =
1

N
�	�	Z�2


1

2 (Eq 4)

r =
1

N
�	�	Y�2


1

2 (Eq 5)

��	Z�
�� =
1

N
�	�	Z�
�2


1

2 (Eq 6)

where N is the number of data points. In the calculations of R
and r, the true values were normalized by the observed (mea-
sured) range so that the parameters vary between −0.5 (smallest
observed value) to 0.5 (largest observed value). The predicted
values were also normalized by the measured range. In prin-
ciple, the ideal case is for m to be 1 and for the other coeffi-
cients to be 0. The coefficient R measures the root mean square
(rms) error in the prediction and r measures the rms deviation
of the predicted points from the least-squared fitted straight
line. The rms <(	Z/
)> is useful because large differences

Table 2 Predictive Capability of Different GP Models as
a Function of the Variables Included in Training

Variables M R r 〈(�Z/�)〉

%R, T, SR 0.48 0.023 0.018 1.13
T, SR 0.57 0.019 0.015 0.97

Cube %R, T 0.44 0.023 0.018 1.07
TS, T, SR 0.45 0.024 0.019 1.24
%R, SR 0.22 0.025 0.013 0.87
%R, T, SR 0.82 0.016 0.015 0.93
T, SR 0.67 0.220 0.019 0.95

S %R, T 0.84 0.015 0.014 0.92
TS, T, SR 0.82 0.016 0.015 0.93
%R, SR 0.31 0.030 0.019 0.88

%R: Percentage reduction, T: Temperature, SR: Strain rate, TS: True strain

Fig. 2 Prediction of cube texture by GP model variables temperature
and strain rate; the broken line is the 1:1 gradient.

Fig. 3 Prediction of S texture by GP model variables percentage
reduction and temperature; the broken line is the 1:1 gradient.

Fig. 1 Schematic depicting how the coefficients were measured
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between the model and the observed value are more serious
when the model has inferred a high level of certainty in the
prediction, while large differences between the model and the
observed value would be expected if a large uncertainty were
associated with the prediction of that point. The results of
analyses are given in Table 2. Figure 2 and 3 show graphical
representations for the prediction of the cube and S components
of the recrystallized texture by the GP model, respectively. The
uncertainty bars in these graphs are for one standard deviation,
and thus approximately 66% of the predictions would be ex-
pected statistically to fall within them. Figure 4 and 5 show the
relevance of the variables used in the prediction by the GP
model for the cube and S texture components, respectively. A
high relevance indicates that this parameter has a strong influ-
ence on the output.

The percentage reduction variables were converted to the
more physically meaningful true strain values. However, this
nonlinear transformation did not improve the prediction per-
formance of the GP model for the cube and S texture compo-

nents. This result also showed that percentage reduction is
sufficient to represent the deformation strain. From the results
shown in Table 2, it is clear from the GP model that tempera-
ture has a prime influence on texture. When this parameter was
omitted, the prediction deteriorated dramatically. This effect
also supports our understanding from the metallurgical point of
view of the rolling process. Using the GP model for cube
texture prediction, temperature and strain rate are the most
important variables, whereas for S it is the temperature and the
percentage reduction. This finding might suggest that the dy-
namic mechanisms for the formation of the two texture com-
ponents are different. From the relevance plots we find that for
the cube texture, temperatures in the first and the fourth stages
of deformation, strain rate at the fourth stage of deformation,
and strain at the third and fourth stages of deformations are all
highly relevant. In the case of the S texture predictions, the
temperatures and strain of the first and fourth stages of defor-
mation are important, but strain rate at all stages has a low
relevance.

Fig. 5 Relevance of S texture variables percentage reduction, temperature, and train rate at four stages

Fig. 4 Relevance of cube texture variables percentage reduction, temperature, and strain rate at four stages
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5. Conclusions

The Gaussian process model has been used for the predic-
tion of cube and S texture based on PSC test results. This model
suggests that temperature is the prime variable that influences
cube and S texture. Such models can be used to evaluate op-
timal strategies for the control of process parameters during
four-stand tandem mill rolling.

Acknowledgments

The support of Alcan International is acknowledged. The
authors are grateful for helpful advise from Dr. H.R. Shercliff.

References

1. R.A. Ricks: Philos. Trans. R. Soc. London, 1999, Ser.. A, 357, pp.
1513-29.

2. I. Gutierrez and M. Fuentes: “Influence of the Microstructural Changes
Occurring During Steady State Hot Deformation on Static Recrystal-
lization Kinetics and Recrystallized Grain Size of Commercial Alu-
minum,” Recrystallization 90., Ed., T Chandra TMS, 1990 Warren-
dale, PA pp. 807-12.

3. N. Raghunathan, M.A. Zaidi, and T. Sheppard: “Recrystallization Ki-
netics of Al—Mg Alloys AA 5056 and AA 5083 After Hot Deforma-
tion,” Mater. Sci. Technol., 1986, 2, pp. 938-45.

4. C.M. Sellers, A.M. Irisarri, and E.S. Puchi: “Recrystallization Char-
acteristics of Aluminum—1% Magnesium Under Hot Working Con-
ditions” in Microstructural Control in Aluminum Alloys: Deformation,
Recovery, and Recrystallization, E. Henry Chia and H.J.
McQeen, ed., The Metallurgical Society/AIME, Warrendale, PA,
1986, pp. 179-96.

5. H.E. Vatne, T. Furu, R. Orsund, and E. Nes: “Modeling Recrystalli-
zation After Hot Deformation of Aluminum,” Acta. Mater., 1996, 44,
pp. 4463-73.

6. E.S. Puchi, J. Beynon, and C.M. Sellars: “Simulation of Hot Rolling
Operations on Commercial Aluminum Alloys,” Proc. Int. Conf. On
Physical Metallurgy of Thermomechanical Processing of Steels and
Other Metals: THERMC ’88,. 1988, I. Tamura, ed., The Iron and Steel
Institute of Japan, Tokyo, Japan, 1988, pp. 572-79.

7. P.D. Hodgson and R.K. Gibbs: “A Mathematical Model to Predict the
Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels,”
ISIJ Int., 1992, 32, pp. 1329-38.

8. R. Sandstrom and R. Lagneborg: “A Model for Static Recrystallization
After Hot Deformation,” Acta Metall., 1975, 23, pp. 481-88.

9. T. Furu, H.R. Shercliff, G.J. Baxter, and C.M. Sellars: “The Influence
of Transient Deformation Conditions on Recrystallization During
Thermomechanical Processing of an Al-1% Mg Alloy,” Acta Mater.,
1999, 47, pp. 2377-89.

10. H.K.D.H. Bhadeshia, D.J.C. Mackay, and L.E. Svensson: “Impact
Toughness of C-Mn Steel Arc Welds—Bayesian Neural Network
Analysis,” Mater. Sci. Technol., 1995, 11(10), pp. 1046-51.

11. S.M. Roberts, J. Kusiak, Y.L. Liu, A. Forcellese, and P.J. Withers:
“Prediction of Damage Evolution in Forged Aluminum Metal Matrix
Composites Using a Neural Network Approach,” J. Mater. Proc. Tech-
nol., 1998, 80-81, pp. 507-12.

12. G.J. Marshall: “Simulation of Commercial Hot Rolling by Laboratory
Plane Strain Compression and its Application to Aluminum Industry
Challenges.” Proc. of the Second Symposium of Hot Deformation of
Aluminum Alloys II, 1998, ed., T.R. Bieler, L.A. Lalli, and S.R.
MacEwen, ed., The Minerals, Metals and Materials Society, Warren-
dale, PA, 1998, pp. 367-82.

13. D.J.C. Mackay: “Bayesian Interpolation,” Neural Comput., 1992, 4,
pp. 415-47.

14. D.J.C. Mackay: “Probable Networks and Plausible Predictions-a Re-
view of Practical Bayesian Methods for Supervised Neural Networks,”
Network: Computat. Neural Syst., 1995, 6, pp. 469-505.

628—Volume 12(6) December 2003 Journal of Materials Engineering and Performance


